Heat and mass transfer analysis of radiative and chemical reactive effects on MHD nanofluid over an infinite moving vertical plate

نویسندگان

چکیده

A comparative study of nanofluid (Cu–H2O) and pure fluid (water) is investigated over a moving upright plate surrounded by porous surface. The novelty the includes unsteady laminar MHD natural transmission flow an incompressible fluid, to get thermal conductivity more than fluid. chemical reaction this with respect radiation absorption observed considering nanoparticles attain equilibrium. present work validated previously published work. travels constant velocity u0, temperature concentration are considered be period harmonically independent mean at plate. most excellent appropriate solution oscillatory pattern boundary layer equations for governing computed utilizing Perturbation Technique. impacts factors on velocity, temperature, visually depicted thoroughly elucidated. features in regime explored qualitatively. This enhancement notably significant copper nanoparticles.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Heat transfer in MHD nanofluid flow over a cone and plate in the presence of heat source/sink

In this study, we presented a mathematical model for analyzing the heat source/sink effect on magnetohydrodynamic two-dimensional ferrofluid flow past a cone and a vertical plate in the presence of volume fraction of ferrous nanoparticles. The governing partial differential equations are transformed as ordinary differential equations making use of similarity solutions and solved numerically wit...

متن کامل

Heat and Mass Transfer on Mhd Nanofluid Flow past a Vertical Porous Plate in a Rotating System

In this paper, we study the chemical reaction and heat source effects on unsteady MHD free convection heat and mass transfer of a nanofluid flow past a semi-infinite flat plate in a rotating system. The plate is assumed to oscillate in time with steady frequency so that the solutions of the boundary layer are the similar oscillatory type. The innovation of the present work is closed-form analyt...

متن کامل

Possessions of viscous dissipation on radiative MHD heat and mass transfer flow of a micropolar fluid over a porous stretching sheet with chemical reaction

This article presents the heat and mass transfer characteristics of unsteady MHD flow of a viscous, incompressible and electrically conducting micropolar fluid in the presence of viscous dissipation and radiation over a porous stretching sheet with chemical reaction. The governing partial differential equations (PDEs) are reduced to ordinary differential equations (ODEs) by applying suitable si...

متن کامل

Transient Convection Fluid Flow with Heat Flux in an Infinite Vertical Plate with Chemical Mass Transfer

The paper studied the transient convection fluid flow with heat flux in an infinite vertical plate with chemical mass transfer. The dimensionless governing equations were solved using the Laplace transform method to obtained the analytical expressions of velocity, temperature and concentration profiles of the fluid with expression of Skin friction, mass and heat transfer in terms of Shear stres...

متن کامل

Diffusion-thermo effects on MHD free convective radiative and chemically reactive boundary layer flow through a porous medium over a vertical plate

The main purpose of this work is to investigate the porous medium and diffusion-thermo effects on unsteady combined convection magneto hydrodynamics boundary layer flow of viscous electrically conducting fluid over a vertical permeable surface embedded in a high porous medium, in the presence of first order chemical reaction and thermal radiation. The slip boundary condition is applied at the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Results in engineering

سال: 2022

ISSN: ['2590-1230']

DOI: https://doi.org/10.1016/j.rineng.2022.100394